Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plast Reconstr Surg Glob Open ; 11(8): e5190, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37588478

RESUMO

Background: Autologous fat grafting is widely used in plastic and reconstructive surgery. Liposuction methods play a key role in surgeons' work efficiency, adipocyte viability, graft survival, and outcomes. We investigated the effect of four liposuction methods on adipocyte viability, debris, and surgeons' work efficiency by measuring the active energy expenditure and changes in heart rate. Methods: Human lipoaspirate was harvested from patients' removed abdominal flaps using four different liposuction methods, and we counted calories per aspirated volume and surgeons' heart rate. Adipocytes were separated from the lipoaspirate immediately by digestion with 0.1% type I collagenase. After digestion, parts of the cells and debris were measured. Adipocytes were plated in an adipocyte maintenance medium containing Alamar blue reagent. The adipocyte metabolic activity was measured using a spectrophotometer. Results: After evaluating the active energy expenditure and changes in surgeons' heart rate, the ultrasonic-assisted liposuction (UAL) method was determined to be the most ergonomic liposuction device for surgeons. In addition, adipocyte viability was higher in the UAL group than in the other groups, and debris was the lowest in the power-assisted liposuction 1 group (PAL1). Conclusions: Adipocyte viability is crucial for improving fat grafting outcomes. This study revealed that the viability of adipocytes is best preserved using the UAL and PAL1 liposuction methods. The UAL and PAL1 methods caused the least damage to the cells. The UAL method yielded the best results for surgeons' work efficiency.

2.
Am J Cancer Res ; 11(9): 4050-4069, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659876

RESUMO

Actin is the most abundant protein in almost all the eukaryotic cells. Actin amino acid sequences are highly conserved and have not changed a lot during the progress of evolution, varying by no more than 20% in the completely different species, such as humans and algae. The network of actin filaments plays a crucial role in regulating cells' cytoskeleton that needs to undergo dynamic tuning and structural changes in order for various functional processes, such as cell motility, migration, adhesion, polarity establishment, cell growth and cell division, to take place in live cells. Owing to its fundamental role in the cell, actin is a prominent regulator of cell division, a process, whose success directly depends on morphological changes of actin cytoskeleton and correct segregation of duplicated chromosomes. Disorganization of actin framework during the last stage of cell division, known as cytokinesis, can lead to multinucleation and formation of polyploidy in post-mitotic cells, eventually developing into cancer. In this review, we will cover the principles of actin regulation during cell division and discuss how the control of actin dynamics is altered during the state of malignancy.

3.
Bioorg Chem ; 115: 105214, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34426161

RESUMO

Synthesis of ß-amino acid derivatives containing hydrazone and azole moieties is described. For this purpose, the appropriate hydrazide was treated with aromatic aldehydes, ketones and phenyl iso(thio)cyanates to obtain the desired outcome. The synthesized target compounds were evaluated for their anticancer properties. The assay displayed 3,3'-((2,6-diethylphenyl)azanediyl)bis(N'-(benzylidene)propanehydrazide) to possess the convincing anticancer effect against triple-negative breast cancer cells in vitro. To further study the anticancer properties of compounds containing a hydrazone moiety in breast cancer, series of previously and newly prepared dihydrazones were investigated. It was determined that derivatives with the bis(N'-(4-bromobenzylidene) fragment in the structure are exclusively cytotoxic to cancer cells. The most active compounds against both cell lines were those containing electron withdrawing 4-BrPh or 4-ClPh moieties, together with either chlorine, bromine or iodine groups in para position of phenyl ring. Selected two representative compounds showed migrastatic activity in MDA-MB-231 cell line, where both of them reduced the growth of breast cancer and glioblastoma cell 3D cultures and inhibited cell colony formation. 2009 Elsevier Ltd. All rights reserved.


Assuntos
Alanina/farmacologia , Antineoplásicos/farmacologia , Glioblastoma/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Alanina/análogos & derivados , Alanina/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
4.
Am J Cancer Res ; 11(5): 1861-1872, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34094658

RESUMO

The broad studies of cancer have led researchers to the creditable understanding of biological and environmental factors that make benign cells to become malignant, as well as the developmental aspects of the tumour cells, known as the "hallmarks of cancer". However, additional research is needed to uncover the features of cancer biology, which would allow to design new and more effective treatment strategies for cancer patients. Since RabGTPases and their effectors are frequently altered in cancer, their role in a regulation of cell division leading to the acquisition of cancer cell-like phenotype has drawn a lot of attention from different research groups in recent years. Both, Rab11 and Rab35 belong to a superfamily of small monomeric GTPases that regulate a diverse array of cellular functions. Lately, Rab11 and Rab35 were declared as oncogenic, and because of their association with abundant cellular functions, a linkage to the induction of cancer, has been proposed. Although the clear connection between the improper regulation of Rab11 or Rab35 and the initiation of tumorigenicity has only beginning to emerge, in this review we will discuss the newest findings regarding the participation of RabGTPases in a control of cell division and promotion of tumorigenesis, trying to link the actual function to the cancer causality.

5.
Mol Biol Cell ; 32(7): 554-566, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33566684

RESUMO

Abscission is a complex cellular process that is required for mitotic division. It is well established that coordinated and localized changes in actin and microtubule dynamics are vital for cytokinetic ring formation, as well as establishment of the abscission site. Actin cytoskeleton reorganization during abscission would not be possible without the interplay between Rab11- and Rab35-containing endosomes and their effector proteins, whose roles in regulating endocytic pathways at the cleavage furrow have now been studied extensively. Here, we identified Rab14 as a novel regulator of cytokinesis. We demonstrate that depletion of Rab14 causes either cytokinesis failure or significantly prolongs division time. We show that Rab14 contributes to the efficiency of recruiting Rab11-endosomes to the thin intracellular bridge (ICB) microtubules and that Rab14 knockout leads to inhibition of actin clearance at the abscission site. Finally, we demonstrate that Rab14 binds to microtubule minus-end interacting MACF2/CAMSAP3 complex and that this binding affects targeting of endosomes to the ICB microtubules. Collectively, our data identified Rab14 and MACF2/CAMSAP3 as proteins that regulate actin depolymerization and endosome targeting during cytokinesis.


Assuntos
Citocinese/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Actinas/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Endossomos/fisiologia , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/fisiologia , Microtúbulos/fisiologia , Proteínas rab de Ligação ao GTP/fisiologia
6.
Nat Commun ; 10(1): 3181, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31320617

RESUMO

Once thought to be a remnant of cell division, the midbody (MB) has recently been shown to have roles beyond its primary function of orchestrating abscission. Despite the emerging roles of post-abscission MBs, how MBs accumulate in the cytoplasm and signal to regulate cellular functions remains unknown. Here, we show that extracellular post-abscission MBs can be internalized by interphase cells, where they reside in the cytoplasm as a membrane-bound signaling structure that we have named the MBsome. We demonstrate that MBsomes stimulate cell proliferation and that MBsome formation is a phagocytosis-like process that depends on a phosphatidylserine/integrin complex, driven by actin-rich membrane protrusions. Finally, we show that MBsomes rely on dynamic actin coats to slow lysosomal degradation and propagate their signaling function. In summary, MBsomes may sometimes serve as intracellular organelles that signal via integrin and EGFR-dependent pathways to promote cell proliferation and anchorage-independent growth and survival.


Assuntos
Comunicação Celular/fisiologia , Divisão Celular/fisiologia , Proliferação de Células/fisiologia , Organelas/fisiologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Receptores ErbB/metabolismo , Células HeLa , Humanos , Integrinas/metabolismo , Complexos Multiproteicos/metabolismo , Fosfatidilserinas/metabolismo , Transdução de Sinais
7.
Medicina (Kaunas) ; 54(4)2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30344284

RESUMO

Faithful cell division is crucial for successful proliferation, differentiation, and development of cells, tissue homeostasis, and preservation of genomic integrity. Cytokinesis is a terminal stage of cell division, leaving two genetically identical daughter cells connected by an intercellular bridge (ICB) containing the midbody (MB), a large protein-rich organelle, in the middle. Cell division may result in asymmetric or symmetric abscission of the ICB. In the first case, the ICB is severed on the one side of the MB, and the MB is inherited by the opposite daughter cell. In the second case, the MB is cut from both sides, expelled into the extracellular space, and later it can be engulfed by surrounding cells. Cells with lower autophagic activity, such as stem cells and cancer stem cells, are inclined to accumulate MBs. Inherited MBs affect cell polarity, modulate intra- and intercellular communication, enhance pluripotency of stem cells, and increase tumorigenic potential of cancer cells. In this review, we briefly summarize the latest knowledge on MB formation, inheritance, degradation, and function, and in addition, present and discuss our recent findings on the electrical and chemical communication of cells connected through the MB-containing ICB.


Assuntos
Diferenciação Celular/fisiologia , Citocinese/fisiologia , Mitose/fisiologia , Organelas/fisiologia , Transdução de Sinais/fisiologia , Humanos
8.
Small GTPases ; 9(1-2): 107-115, 2018 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-28471300

RESUMO

Cytokinesis is a complex cellular process that leads to a physical separation of two daughter cells. The key to a successful cytokinesis is a coordinated reorganization of cellular cytoskeleton and membrane trafficking pathways. Consequently, Rab GTPases recently emerged as major regulators of cellular division. Rabs belong to a superfamily of small monomeric GTPases that regulate a diverse array of cellular functions. Rabs in particular are well-established regulators of membrane transport and have been shown to mediate several membrane transport steps including vesicle formation, molecular motor-dependent vesicle transport and targeting of transport vesicles and organelles to their correct destinations. Significantly, several Rab GTPases also have been shown to function in regulating cell division. In this review, we discuss latest findings about the function of Rabs and polarized membrane transport during different steps of cytokinesis as well as during the final stage of cell division known as abscission.


Assuntos
Divisão Celular , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Polaridade Celular , Citocinese , Hepatócitos/citologia , Humanos
9.
J Cell Sci ; 130(23): 4051-4062, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29196475

RESUMO

The post-mitotic midbody (MB) is a remnant of cytokinesis that can be asymmetrically inherited by one of the daughter cells following cytokinesis. Until recently, the MB was thought to be degraded immediately following cytokinesis. However, recent evidence suggests that the MB is a protein-rich organelle that accumulates in stem cell and cancer cell populations, indicating that it may have post-mitotic functions. Here, we investigate the role of FYCO1, an LC3-binding protein (herein, LC3 refers to MAP1LC3B), and its function in regulating the degradation of post-mitotic MBs. We show that FYCO1 is responsible for formation of LC3-containing membrane around the post-mitotic MB and that FYCO1 knockdown increases MB accumulation. Although MBs accumulate in the stem-cell-like population of squamous cell carcinomas, FYCO1 depletion does not affect the clonogenicity of these cells. Instead, MB accumulation leads to an increase in anchorage-independent growth and invadopodia formation in HeLa cells and squamous carcinoma cells. Collectively, our data suggest that FYCO1 regulates MB degradation, and we present the first evidence that cancer invasiveness is a feature that can be modulated by the accumulation of MBs in cancer stem cells.This article has an associated First Person interview with the first author of the paper.


Assuntos
Diferenciação Celular/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Fatores de Transcrição/metabolismo , Autofagia/fisiologia , Células HeLa , Humanos , Organelas/metabolismo
10.
J Med Chem ; 57(22): 9435-46, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25358084

RESUMO

Human carbonic anhydrase IX (CA IX) is highly expressed in tumor tissues, and its selective inhibition provides a potential target for the treatment of numerous cancers. Development of potent, highly selective inhibitors against this target remains an unmet need in anticancer therapeutics. A series of fluorinated benzenesulfonamides with substituents on the benzene ring was designed and synthesized. Several of these exhibited a highly potent and selective inhibition profile against CA IX. Three fluorine atoms significantly increased the affinity by withdrawing electrons and lowering the pKa of the benzenesulfonamide group. The bulky ortho substituents, such as cyclooctyl or even cyclododecyl groups, fit into the hydrophobic pocket in the active site of CA IX but not CA II, as shown by the compound's co-crystal structure with chimeric CA IX. The strongest inhibitor of recombinant human CA IX's catalytic domain in human cells achieved an affinity of 50 pM. However, the high affinity diminished the selectivity. The most selective compound for CA IX exhibited 10 nM affinity. The compound that showed the best balance between affinity and selectivity bound with 1 nM affinity. The inhibitors described in this work provide the basis for novel anticancer therapeutics targeting CA IX.


Assuntos
Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/química , Desenho de Fármacos , Benzeno/química , Calorimetria , Dióxido de Carbono/química , Anidrase Carbônica IV/química , Catálise , Domínio Catalítico , Cristalização , Cristalografia por Raios X , Humanos , Concentração de Íons de Hidrogênio , Cinética , Neoplasias/tratamento farmacológico , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Sulfonamidas/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...